1,183 research outputs found

    Skylab mobile laboratory

    Get PDF
    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights

    Progress toward cascade cells made by OM-VPE

    Get PDF
    Organometallic Vapor Phase Epitaxy (COM-VPE) was used to make a sophisticated monolithic cascade cell, with a peak AMO efficiency of 16.6%, not corrected for 14% grid coverage. The cell has 9 epitaxial layers. The top cell is 1.35 microns thick with a 0.1 micron thich emitter. Both cells are heteroface n-p structures. The cascade cell uses metal interconnects. Details of growth and processing are described

    Identifying Advantages and Disadvantages of Variable Rate Irrigation – An Updated Review

    Get PDF
    Variable rate irrigation (VRI) sprinklers on mechanical move irrigation systems (center pivot or lateral move) have been commercially available since 2004. Although the number of VRI, zone or individual sprinkler, systems adopted to date is lower than expected there is a continued interest to harness this technology, especially when climate variability, regulatory nutrient management, water conservation policies, and declining water for agriculture compound the challenges involved for irrigated crop production. This article reviews the potential advantages and potential disadvantages of VRI technology for moving sprinklers, provides updated examples on such aspects, suggests a protocol for designing and implementing VRI technology and reports on the recent advancements. The advantages of VRI technology are demonstrated in the areas of agronomic improvement, greater economic returns, environmental protection and risk management, while the main drawbacks to VRI technology include the complexity to successfully implement the technology and the lack of evidence that it assures better performance in net profit or water savings. Although advances have been made in VRI technologies, its penetration into the market will continue to depend on tangible and perceived benefits by producers

    Can vesicle size distributions assess eruption intensity during volcanic activity?

    Get PDF
    Abstract. We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April–May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma–water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in real time during the eruption. However, the products studied show no peculiar feature that could herald the renewed eruption intensity observed in the following Phase III of the eruption

    Toward automated irrigation management with integrated crop water stress index and spatial soil water balance

    Get PDF
    Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied irrigation, crop yield, and CWP. This study implemented the Spatial EvapoTranspiration Modeling Interface (SETMI) model and the Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system for management of a center pivot irrigation system in a 58-ha maize-soybean field during the 2020 and 2021 growing seasons. The irrigation scheduling methods included: ISSCADA plant feedback, ISSCADA hybrid, common practice, and SETMI. These methods were applied at irrigation levels of 0, 50, 100, and 150% of the full irrigation prescribed by the respective irrigation scheduling method. Data from infrared thermometers (IRTs), soil water sensors, weather stations, and satellites were used in the irrigation methods. Mean seasonal irrigation prescribed was different among the irrigation levels and methods for the 2 years. The ISSCADA plant feedback prescribed the least irrigation among the methods for majority of the cases. The common practice prescribed the largest seasonal irrigation depth among the methods for three crop-year cases. The maize yield in rainfed was found to be significantly lower than the irrigated levels in 2020 since 2020 was a dry year. No significant differences were observed in crop yield among the different irrigation methods for both years. The CWP among the different irrigation methods ranged between 2.72 and 3.15 kg m−3 for 2020 maize, 1.03 and 1.13 kg m−3 for 2020 soybean, 3.57 and 4.24 kg m−3 for 2021 maize, and 1.19 and 1.48 kg m−3 for 2021 soybean. Deficit level (50%) had the largest irrigation water productivity in all crop-year cases in this study. The ISSCADA and SETMI systems were found to reduce irrigation applications as compared to the common practice while maintaining crop yield. This study was the first to implement the newly developed integrated crop water stress index (iCWSI) thresholds and the ISSCADA system for site-specific irrigation of maize and soybean in Nebraska

    Toward automated irrigation management with integrated crop water stress index and spatial soil water balance

    Get PDF
    Decision support systems intended for precision irrigation aim at reducing irrigation applications while optimizing crop yield to achieve maximum crop water productivity (CWP). These systems incorporate on-site sensor data, remote sensing inputs, and advanced algorithms with spatial and temporal characteristics to compute precise crop water needs. The availability of variable rate irrigation (VRI) systems enables irrigation applications at a sub-field scale. The combination of an appropriate VRI system along with a precise decision support system would be ideal for improved CWP. The objective of this study was to compare and evaluate two decision support systems in terms of seasonal applied irrigation, crop yield, and CWP. This study implemented the Spatial EvapoTranspiration Modeling Interface (SETMI) model and the Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system for management of a center pivot irrigation system in a 58-ha maize-soybean field during the 2020 and 2021 growing seasons. The irrigation scheduling methods included: ISSCADA plant feedback, ISSCADA hybrid, common practice, and SETMI. These methods were applied at irrigation levels of 0, 50, 100, and 150% of the full irrigation prescribed by the respective irrigation scheduling method. Data from infrared thermometers (IRTs), soil water sensors, weather stations, and satellites were used in the irrigation methods. Mean seasonal irrigation prescribed was different among the irrigation levels and methods for the 2 years. The ISSCADA plant feedback prescribed the least irrigation among the methods for majority of the cases. The common practice prescribed the largest seasonal irrigation depth among the methods for three crop-year cases. The maize yield in rainfed was found to be significantly lower than the irrigated levels in 2020 since 2020 was a dry year. No significant differences were observed in crop yield among the different irrigation methods for both years. The CWP among the different irrigation methods ranged between 2.72 and 3.15 kg m−3 for 2020 maize, 1.03 and 1.13 kg m−3 for 2020 soybean, 3.57 and 4.24 kg m−3 for 2021 maize, and 1.19 and 1.48 kg m−3 for 2021 soybean. Deficit level (50%) had the largest irrigation water productivity in all crop-year cases in this study. The ISSCADA and SETMI systems were found to reduce irrigation applications as compared to the common practice while maintaining crop yield. This study was the first to implement the newly developed integrated crop water stress index (iCWSI) thresholds and the ISSCADA system for site-specific irrigation of maize and soybean in Nebraska

    Evaluation of cisplatin in combination with a biologic response modifier in a murine mammary carcinoma model.

    Get PDF

    Frontiers in Pigment Cell and Melanoma Research

    Full text link
    We identify emerging frontiers in clinical and basic research of melanocyte biology and its associated biomedical disciplines. We describe challenges and opportunities in clinical and basic research of normal and diseased melanocytes that impact current approaches to research in melanoma and the dermatological sciences. We focus on four themes: (1) clinical melanoma research, (2) basic melanoma research, (3) clinical dermatology, and (4) basic pigment cell research, with the goal of outlining current highlights, challenges, and frontiers associated with pigmentation and melanocyte biology. Significantly, this document encapsulates important advances in melanocyte and melanoma research including emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, epidemiology, pigment biophysics and chemistry, and evolution
    • …
    corecore